兼任中国遗传学会理事长、中国动物学会副理事长,国际重要刊物Genome Biol Evol 副主编、Anim Genet、Sci Rep、J Hered 编委。推动了国际生命条形码计划和国际“千犬基因组计划”。同时通过推动中国科学院西南家猪分子育种基地的建设将畜禽进化基因组的研究成果应用于家猪分子育种实践并进行产业转化与推广。
在建立具有国际影响的人群和动物DNA库的基础上,主要从分子水平研究生物多样性的演化及机制,澄清了灵长类、食肉类、两栖爬行类等动物类群系统与演化中的一些重要问题。揭示了东亚人群进化的一些规律和一些民族的演化历程。系统地研究了野生动物和家养动物的遗传多样性,发现遗传多样性贫乏与物种濒危之间没有必然的对应关系;确定了家犬的东亚起源,证明东亚是家养动物驯化的重要区域。对自然选择和人工选择作用下基因组进化的研究,揭示了一些重要的动物适应进化和畜禽经济性状形成的遗传机制。近5年来,在Science,Nature,PNAS,PLos Genetics等国际刊物发表SCI文章150余篇。先后获国家自然科学二等奖、长江学者成就一等奖、云南省科技突出贡献奖、何梁何利基金科学与技术进步奖等国家和省部级科技奖励20余项。由于在生物多样性研究领域的突出贡献,获国际重要奖项“生物多样性领导奖”,成为亚洲地区唯一的获奖人。
承担项目
1.973项目“中国-喜马拉雅地区生物多样性演变与保护研究”
2.NFSC重大项目“动物DNA条形码基因和隐存多样性的研究”
3.NFSC创新群体项目“基因组中新遗传结构的起源与动物的适应进化”
4.NFSC 面上项目“家犬在人工选择下的高原适应机制研究”
5.NFSC 重大研究计划集成项目“家犬在人工选择下的微进化研究”
6.农业部转基因重大专项
“基于人工选择作用分析克隆鉴定重要功能基因”
“猪、牛、羊肌肉生长和脂肪沉积性状重要育种价值基因的克隆及其功能验证”
7.中国科学院战略先导专项
子课题“猪脂肪沉积等优质高产分子模块解析”
子课题“西南分子育种基地的完善与能力提升”
子课题“青藏高原家养动物适应性状的解析”
子课题“驯化动植物对高寒环境的适应及基因资源利用”
近五年来,结合基因组学的发展,从基因组水平系统研究关键区域人群和重要家养动物和野生动物的自然选择和人工选择的遗传机制。
1、家养动物起源驯化与人工选择的基因组进化机制
家养动物是人类社会发展到特定阶段的产物,阐明家养动物的起源驯化历史,在基因组水平上揭示人工驯化的遗传机制,不仅可为未来畜禽中新品种的培育奠定科学基础,而且对了解人类进化的历史也有重要意义。
2、动物适应性进化的遗传机制
生物进化就是生物不断适应环境的过程,其遗传机制是生物学上的基本问题。我们主要围绕能量代谢、信息感受与传导等探讨动物适应其生态位的遗传机制。
3、人和动物高原适应的分子机制
青藏高原是研究高原适应的天然实验室,我们采用比较基因组学研究策略,通过比较这一关键地区处于不同适应阶段的人群、家养动物和野生动物等不同类群高原适应机制的异同,以及同一类群在世界不同高原地区的适应机制,揭示高原适应的普遍规律。
4、基因组多样性与亚洲人群的演化
了解自身的进化历程是人类不断探索的问题。我们在基因组水平研究现代人走出非洲之后的迁移历史及其对环境适应的遗传机。
1.Liu YH, Wang L, Xu T, Guo XM, Li Y, Yin TT, Yang HC, Hu Y, Adeola AC, Sanke OJ, Otecko NO, Wang M, Ma YP, Charles OS, Sinding MHS, Gopalakrishnan S, Samaniego JA, Hansen AJ, Fernandes C, Gaubert P, Budd J, Dawuda PM, Rueness EK, Jiang LB, Zhai WW, Gilbert MTP, Peng MS, Xiaopeng Qi XP*, Wang GD*, ZhangYP*. Whole-genome sequencing of African dogs provides insights into adaptations against tropical parasites. Molecular Biology and Evolution, 2018, 35: 287-298. IF14.558
2.Wang MS, Otecko NO, Wang S, Wu DD, Yang MM, Xu Y, Murphy RW, Peng MS*, Zhang YP*. An evolutionary genomic perspective on the breeding of dwarf chickens. Molecular Biology and Evolution, 2017, 34:3081-3088. IF14.558
3.Wang MS, Zeng Y, Wang X, Nie WH, Wang JH, Su WT, Otecko NO, Xiong ZJ, Wang S, Qu KX, Yan SQ, Yang MM, Wang W, Dong Y*, Wu DD*, Zhang YP*. Draft genome of the gayal, Bos frontalis. Giga science, 2017, 6(11):1-7. IF10.644
4.Zeng L, Ming C, Li Y, Su LY, Su YH, Otecko NO, Liu HQ, Wang MS, Yao YG, Li HP, Wu DD*, Zhang YP*. Rapid evolution of genes involved in learning and energy metabolism for domestication of the laboratory rat. Molecular Biology and Evolution, 2017, 34:3148-3153. IF14.558
5.Zeng L, Ming C, Li Y, Su LY, Su YH, Otecko NO, Dalecky A, Donnellan S, Aplin K, Liu XH, Song Y, Zhang ZB, Esmailizadeh A, Sohrabi SS, Nanaei HA, Liu HQ,Wang MS, Atteynine SA, Rocamora G, Brescia F, Morand S, Irwin DM, Peng MS, Yao YG, Li HP*, Wu DD*, Zhang YP*. Out of southern East Asia of the brown rat revealed by large scale genome sequencing. Molecular Biology and Evolution, 2017, doi:10.1093/molbev/msx276. IF14.558
6.Li Y, Wang MS, Otecko NO, Wang W, Shi P, Wu DD*, Zhang YP*. Hypoxia potentially promotes Tibetan longevity. Cell Research, 2017, 27(2):302-305. IF12.393
7.Yu L*, Wang GD, Ruan J, Chen YB, Yang CP, Cao X, Wu H, Liu YH, Du ZL, Wang XP, Yang J, Cheng SC, Zhong L, Wang L, Wang X, Hu JY, Fang L, Bai B, Wang KL, Yuan N, Wu SF, Li BG, Zhang JG, Yang YQ, Zhang CL, Long YC, Li HS, Yang JY, Irwin DM, Ryder OA, Li Y, Wu CI*, Zhang YP*. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nature Genetics. 2016, 48:947.
8.Li HP, Xiang-Yu JG, Dai GY, Gu ZL, Ming C, Yang ZF, Ryder OA, Li WH*, Fu YX*, Zhang YP*. Large numbers of vertebrates began rapid population decline in the late 19th century. PNAS. 2016, 113:14079-14084.
9.Shen QK, Sulaiman X, Yao YG, Peng MS*, Zhang YP*. Was ADH1B under Selection in European Populations? Am J Hum Genet. 2016, 99:1217-1219.
10. Wang GD, Zhai WW, Yang HC, Wang L, Zhong L, Liu YH, Fan RX, Yin TT, Zhu CL, Poyarkov AD, Irwin DM, Hytonen MK, Lohi H, Wu CI, Savolainen P, and Zhang YP*. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Research. 2016,26:21-33.
11. Wang GD, Peng MS, Yang HC, Savolainen P, Zhang YP*. Questioning the evidence for a Central Asian domestication origin of dogs. PNAS. 2016, 113:E2554-E2555.
12.Wang MS, Zhang RW, Su LY, Li Y, Peng MS, Liu HQ, Zeng L, Irwin DM, Du JL, Yao YG, Wu DD*, Zhang YP*. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Research. 2016, 26: 556-573.
13.Wang MS, Huo YX, Li Y, Otecko NO, Su LY, Xu HB, Wu SF, Peng MS, Liu HQ, Zeng L, Irwin DM, Yao YG, Wu DD*, Zhang YP*. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. J Mol Cell Biol. 2016, 8(6):542-552.
14.Wang GD, Zhai WW, Yang HC, Wang L, Zhong L, Liu YH, Fan RX, Yin TT, Zhu CL, Poyarkov AD, Irwin DM, Hyt?nen MK, Hannes Lohi H, Wu CI, Savolainen P*, Zhang YP*. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Research, 2016, 26:21-33.
15.Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, Tu XL, Dong Y, Zhu CL, Wang L, Yang MM, Wu SF, Miao YW, Liu JP, Irwin DM, Wang W, Wu DD*, Zhang YP*. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Molecular Biology and Evolution, 2015, 32:1880-1889.
|